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The eigenvalues and eigenfunctions of the Fokker-Planck equation describing 
the extremely underdamped Brownian motion in a symmetric double-well 
potential are investigated. By transforming the Fokker-Planck equation to 
energy and position coordinates and by performing a suitable averaging over 
the position coordinate, a differential equation depending only on energy is 
derived. For finite temperatures this equation is solved by numerical integration, 
whereas in the weak-noise limit an analytic result for the lowest nonzero eigen- 
value is obtained. Furthermore, by using a boundary-layer theory near the 
critical trajectory, the correction term to the zero-friction-limit result is found. 
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1. I N T R O D U C T I O N  

As explained in our recent paper, a) the Brownian motion of particles in a 
double-well potential h~s applications in many different fields. In Ref. 1, 
the corresponding Fokker-Planck equation was solved by the matrix-con- 
tinued-fraction method. In particular it was shown that the Laplace trans- 
form of the time-dependent distribution function (leading to suscep- 
tibilities) as well as eigenvalues and eigenfunctions could be obtained by 
calculating appropriate matrix continued-fractions. This continued-fraction 
method, however, does not work for very small friction constants. It is the 
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purpose of the present paper to determine the eigenvalues and eigen- 
functions in the low-friction limit. For the extremely underdamped case the 
energy will become nearly a constant of motion, i.e., it will become a slow 
(relevant) variable, whereas the position or velocity will become a fast 
(irrelevant) variable (see, for instance, Ref. 2 for a discussion of fast or slow 
variables). Therefore one should use the energy or a function of the energy 
like the action integral as the relevant variable in the low-friction limit, as 
done in Refs. 3-9, leading to eigenvalues of the Fokker-Planck operator, 
which are in lowest order proportional to the friction constant, i.e., 

)~ =-~7 (1.1) 

The lowest nonzero eigenvalue 21 if well separated from the higher ones 
determines the exchange rate between the left and the right well. This rate 
was obtained in the weak-noise limit, i.e., for xlE/(kT)>>l in Refs. 3-8. 
(Here AE is the energy difference between the minima of the double-well 
potential and the hump between the wells.) In the present paper the follow- 
ing extensions are made. First we include a boundary-layer theory near the 
critical trajectory (Section 3). The critical trajectory is the line 
E = Eo = const in phase space, which starts at the maximum of the poten- 
tial in the middle (see Fig. 1). As it is further shown the distribution 
function becomes x dependent near the critical trajectory. Next we derive 
an eigenvalue equation for the energy-dependent eigenfunctions (Sec- 
tion 4). For finite temperatures this eigenvalue equation is solved for the 
double-well potential (mass m = 1 ) 

f (x)=d2x2/2+d4x4/4,  d2<0,  d 4 > 0  (1.2) 

by numerical integration. Whereas eigenvalues corresponding to even 
eigenfunctions are proportional to y + O(72), eigenvalues corresponding to 
odd eigenfunctions are given by A? +/~y3/2 + O(72). The term proportional 
to ~3/2 stems from the boundary condition for the boundary-layer theory. 
In Section 5 we transform the eigenvalue equation to an integral equation. 
In the weak-noise limit this integral equation can be solved analytically, 
leading, besides to the Kramers result, to corrections for somewhat higher 
damping constants and temperatures. The correction terms to the trans- 
ition rates proportional to 73/2 are explicitly given. A term of this type was 
also found by Bfittiker et aL (7) and Biittiker and Landauer, ~Sa) the propor- 
tionality factor was, however, not derived in these references. In Ref. 6a an 
analytical expression for the escape rate out of a single well was derived; 
their result, however, does not show a term ,,,y3/2. 
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2. BASIC  E Q U A T I O N S  

The basic equation for the Brownian motion of particles in the poten- 
tial f (x)  is given by the following Fokker-Planck equation in velocity- 
position space (also called the Kramers equation) for the distribution 
function W= W(x, v, t) 

OW { ~ ~ ~72} 
at - - ~ v + ~  [~v+ f ' ( x ) ] + ~ o - ~  vr (2.1) 

In (2.1) we have denoted the friction constant by 7. The noise strength O is 
proportional to the temperature T, i.e., O = kT. For small 7 the energy 

E = v2/2 +f (x )  (2.2) 

becomes a slow variable. One should therefore use E or a function of E like 
the action integral as one variable. (4~ As the other variable we keep the 
space coordinate x. To retain the full information of the distribution 
function in position and energy two separate energy-distribution functions, 
one for each sign of the velocity, have to be taken into account: 

w+ (x, E, t)= W(x, v(x, E), 0 

W_(x, E, t)= W(x, -v (x ,  E), t) 

v(x, E)= + 2 [ E - f ( x ) ]  1/2 

(2.3) 

(2.4) 

It should be emphasized that W_+ are the distribution functions in (x, v) 
space expressed by x and E coordinates. The distribution functions W+ in 
(x, E) space are obtained by dividing W+ by the Jacobian 

~?(x, E) = O___E = v(x, E) = 2 [ E - f ( x ) ]  1/2 (2.5) 
~(x, v) Ov 

i.e., 

P~'• (x, E, t)= W+_ (x, E, t)/v(x, E) (2.6) 

The distribution functions if/_+ are not used because the equations for W+ 
have a simpler form. 

For further calculations the sum S and the difference D of W+ and 
W_ are sometimes more suitable: 

Ws, D(x, E, t) = W+ (x, E, t) +_ W_ (x, E, t) (2.7) 

822/41/5-6-7 
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For the new variables x, E the Fokker-Planck equation (2.1) for W e and 
for Ws, r) takes the form 

0 W+ = T v(x, E) 8 
o t  - w+_ 

+Tv(x,E)~Iv(x,E)( l  +O-~) W+_J (2.8a) 

ws,  = -v(x,  w ,s 

+Tv(x,E)~Iv(x,E)( l  + O ~ )  Ws.D] (2.8b) 

At the turning points of the motion without friction, i.e., at x r, x ~ for E > Eo 
and at x], 2, x].2 for E < Eo (see Fig. 1), both distribution functions W+ and 
W_ must agree, i.e., 

E >  E 0 

E< Eo 

W+ (x "J, E, t )=  W (x ~'l, E, t) 

Wo(x ~'1, E, t) = 0 
(2.9a) 

(2.9b) 

W+tx r,l E, t)= W (XrL;~, E, t) ~, 1,2~ 

E, t)  = o 

(2.10a) 

(2.10b) 

2.1. Ansatz  for  the Distr ibut ion Function 

For a physical interpretation of the distribution function we think of 
an ensemble of noninteracting particles. For a zero damping constant the 
particles move along the trajectories E =  const (see Fig. 1). For small dam- 
ping one gets a slow diffusion of the particles perpendicular to their initial 
trajectories. Because of the motion along the trajectories, the distribution 
for W becomes independent of the position [the distribution W in 
x-E space is then proportional to the inverse of the velocity see Eq. (2.6)]. 
Near the critical trajectory, however, this in general is no longer the case as 
seen as follows. The particles of the ensemble for E < Eo move either in the 
left or in the right well, whereas for E > E0 they move from the left side to 
the right side and vice versa. How may particles move from the left well to 
the right well? First the particles in the left well may be pushed up by the 
Langevin forces across the critical trajectory E = Eo. They then move near 
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f(x) 
E > E@ l 

E = E o /l 
i l 

II I I 

Fig. 1. A typical symmetric double-well potential and its turning points x~,~:, X I'r (upper part) 
and three typical trajectories in phase space (lower part). 

this trajectory to the right side. Here they may again be pushed by the 
Langevin forces across the critical trajectory and thus reach the right well 
with E < Eo. For small damping forces this whole process takes place in a 
small region (boundary layer) near the critical trajectory. As it will turn 
out later on the thickness of the boundary layer is of the order x~-  If the 
distribution functions in the two wells are different (which is always the 
case if the transition from the left to the right well is considered) one 
expects a strong diffusion perpendicular to the critical trajectory because of 
the large gradient of W with respect to E. Furthermore, because of the 
motion of the particles along the trajectories, we will have an x dependence 
in this boundary-layer region. We therefore make the following ansatz for 
the distribution functions Ws.o: 

Ws(x 'E ' t )=f le (E ' t )+Ws(X 'E ' t )  for E>Eo (2.11a) 

Wo(x, E, t) = WD(X, E, t) 

Ws(x,E,t)=flet ,  r(E,t)+Ws(X,E,t)  for E<Eo (2.1 lb) 

WD(x, E, t) = WD(X, E, t) 

Here if(E, t) and flet, r(E, t) are functions slowly varying in E depending 
only on time t and energy E, whereas Ws, o(x, E, t) additionally depending 
on position x, are rapidly varying in E. As it turns out later on ~ fie~dE and 
O l~Zl.r/~E are of the order 7 ~ whereas OWs, D/OE a r e  of the order 7-1/2 
Because of the continuity condition (2.9b), (2.10b), fleD(E, t) must always 
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be zero. Below the critical energy E = Eo we have two wells. We therefore 
must distinguish for the E-dependent functions whether we are in the left 
well (index/, x < 0) or in the right well (index r, x > 0). The functions Ws,o 
are only different from zero in a boundary-layer region (skin) around the 
critical trajectory. Thus the functions Ws, o(x, E, t) depend very strongly on 
E. As already mentioned, the thickness of this boundary layer will turn out 

to be proportional to ~/~. 

2.2. Equation of M o t i o n  for  I/V and ~Jg/,r 
Outside the boundary layer the distribution function does not depend 

on x. We first insert (2.11) with w = 0  into the Fokker-Planck equation 
and average over the time T along a trajectory E=const .  The time T 
should be small compared to the time 1/7 in which W(E, t) changes its 
value appreciably. Because of 

dx (2,12) 
f " " dt = f " " v(x, E) 

we may as well divide (2.8b) [or (2.8a)] by v(x, E) and take an x average. 
The term containing (O/Ox) then drops out and we finally arrive at 

E>Eo:T(E)-~ITv=7 I (E)  1+O~--~ 1~ (2.13) 

E<Eo:Tr ,  z(E) Wr,z=V-~Ir,  z(E) 1+O~-~ if:r., (2.14) 

Here I(E), T(E) are defined by (E> Eo) 

f 
x r ( E )  

I(E) = 2 Jx~(E) v(x, E) dx 

ax/v(x, E) T(E) = I'(E) = 2 "x,(e) 

and l,,t(E), T,,I(E) by (E< Eo) 

= I x~(~) Ir(E) 2 fx[(e) V(X, E) dx, It(E) = 2 v(x, E) dx 

T,(E) = g(E) = 2 i ~(~ dx/v(x, E) 
Jx~(e) 

Tt(E) = I}(E) = 2 ~(~) Jx~(e) dx/v(x, E) 

(2.15) 

(2.16) 
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The second expression in (2.15) is twice the time a particle needs to travel 
from x t to x r, i.e., it is the round-trip time for particles with energy E > E0, 
whereas Tr(E) in (2.16) is twice the time a particle needs to travel from x] 
to x~, i.e., it is the round-trip time for particles with energy E < Eo in the 
right well. Correspondingly TI(E) is the round-trip time in the left well. The 
expression I (E)  and L,t(E) are the action integrals for energies E > Eo and 
E < Eo, respectively. In the last case l and r refer to left and right well. At 
the critical energy Eo we obviously have 

I(Eo + O) = I,(Eo - O) + L(Eo  - O) (2.17) 

2.3. Symmetr ic  Potential  

Further on we shall restrict ourselves to a symmetric double-well 

x~=-x~ (2.18) 
potential 

f ( x )  = f ( - x ) ,  x r= - x  t, x~ = - x ] ,  

We then define I (E)  and T(E)  for E < Eo by 

I , (E) = I~(E) = I(E) /2  
(2.19) 

T,(E)  = T r ( E ) =  T(E) /2  

and (2.17) simplifies to 

I(Eo + O) -- I(Eo - O) =- I(Eo) 

Notice that I (E)  for E < E0 is now twice the action integral in one well and 
that T(E)  for E < E o  is twice the round-trip time in one well. We 
introduced a factor 2 in the definition of T(E)  and I (E)  for E < Eo, because 
then the action integral is continuous at E =  E o [see (2.17)]. 

2.4. Explicit  Expressions for  the Potential  (1.2)  

For the potential (1.2) the turning points as well as the action variable 
I (E)  and its derivative can be given analytically. Obviously for the critical 
energy Eo we have Eo = 0. 
We now introduce the abbreviations 

a = (]d21/d4)l/2[1 + (1 + 4 d 4 E / ~ )  1/2] 1/2 (2.20a) 

b = ([d21/d4)~/2[- 1 + (1 + 4d4E/d2) ~/2 ] ~/2 (2.20b) 

c = ([dz l /d4)m[l  - (1 + 4d4E/d2) ~/2 ] 1/2 (2.20c) 

= [1 + (1 + 4d4E/d~)1/2]/[2(1 + 4d4E/d~) !/2 ] (2.20d) 
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It should be noted that a and ~ are valid for E>~ -d~/(4d4) , whereas b is 
only valid for E>~ 0 and c for -~/(4d4)~< E ~< 0. The turning points for the 
bistable potential (1.2) are given by 

x r = - x  l = a  for E>~0 

x i = -x~  = a for - d~/(4d4) <~ E <~ 0 

x~ = -x~ = c for - d~/(4d4) <~ E ~ 0 

I(E) and T(E) can be expressed by the complete elliptic integrals of the first 
and second kind, K and E, (16) i.e., 

(i) E > 0: 

I(E) = (2/3)(2d4)l/2(a 2 + b2) 1/2 

x [b2K(~) - 2([d21/d4) E(~)] (2.21a) 

T(E) = 4(2/d4)~/2(a 2 + b 2) 1/2 K(~) (2.22a) 

(ii) - d~/(4d4) ~< E < 0: 

I(E) = (4a/3)(Zd4)m[ld2l/d4 E(1 /~ ) -  cZK(1/~)] (2.21b) 

T(E) = 4(2/d4) 1/2 a ~K(1/~) (2.22b) 

They are plotted in Fig. 2. By expanding the elliptic integrals, we can 
derive the following asymptotic expressions: 

(i) for E > -dZ/(4d4) = Emin, 

I(E) = ~z [d213/2/(x/2 d4)[(1 + 4d4E/d~) 

q- (3/32)(1 -t- 4d4E/d~2) 2] (2.21b') 

T(E) = 27z ~ Id2l--1/2[ t -t- (3/16)(1 + 4d4E/d~) ] (2.22b') 

(ii) for E < Eo = 0, 

I(E) = (8 Id213/2/3d4){ 1 - 3(d4 lEt~aN) 
x [1 + In  16d~/(d4 IEI)]} (2.21b") 

T(E) = Id2l-i/2{2 In 16d~2/(d 4 IEI) 

+ (d4 IEh/d~)[(3/2)In 16d~/(d, [ E l ) -  1] } (2.22b") 

(iii) for E > E o = 0, 

I(E) = (8 I d213/2/3d4){ 1 + 3(d4E/d 2) 

x [1 + In  16d~j(d4E)] } (2.21a") 

T(E) = Id2[-1/2{2 In 16~/(daE) 

- (d4E /~ ) [ (3 /2 )  In 16~/(d4E) + 1 ] } (2.22a") 
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(b) 
Fig. 2. The action integrals (2.21) and the periods (2.22) (solid lines) as well as the 
asymptotic expressions (2.21'), (2.21"), (2.22'), (2.22") as a function of the energy for the 
double-well potential (1.2). Here we used the normalized variables E,,=4d4Ed~ 2, 
T, = T Id211/2 and if, = 4d4I [d21-3/2. 
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(iv) for E~d~2/4d4, 

I(E) = (4 Id213/2/3d4)(4d4E/d~)3/4 

x {K(1/2) + (3/2)(4d4E/d2) -1/2 

x [2E(1 /2) -K(I /2 ) ]  + [3d~/(32daE)] K(1/2)} (2.21a') 

T(E) = 4 I d21 -1/2(4daE/d~)- 1/4 

• {K(1/2)+ (1/2)(4d4E/d2) -1/2 

• [-2E(1/2)- K(1/2)] 

- (d~/32d4E) K(1/2)} (2.22a') 

In (2.21a'), (2.22a') we expanded the elliptic integrals at ~ = 1/2 in Taylor 
series. Onodera ~17) has also given these expansions, but without the correc- 
tion terms proportional to E-1/2 and E-1. 

The asymptotic expansions (2.21'), (2.21"), (2.22'), (2.22") are also 
shown in Fig. 2. As seen, they approximate the corresponding expressions 
in the appropriate regions very well. The weak logarithmic singularity of 
T(E) at E = Eo does not lead to serious difficulties in solving the differential 
equations (2.13), (2.14). 

3. B O U N D A R Y - L A Y E R  T H E O R Y  

As already explained in Section 2 the x-independent functions I~(E, t), 
l~t,r(E, t) alone cannot always describe the process in the entire region. 
Here the x-dependent functions Ws and wD must also be taken into account 
in the boundary-layer region around the critical trajectory E = E0. Because 
the functions Ws and WD are rapidly varying in E we may neglect the first 
derivative with respect to E in (2.8) compared to the second one and 
replace v(x, E) in (2.8) by 

v(x, E ) ~  v(x, Eo) (3.1) 

It follows from (3.4), (3.5) that the thickness of the boundary layer, i.e., the 
region in which Ws and wD give an essential contribution to the dis- 
tribution function, is of the order ~fT. 

If we consider a time scale of the distribution functions of the order 1/7 
the time derivative of w s and wD need not be taken into account in (2.8b), 
because in the boundary layer of thickness ~ a quasistationary dis- 
tribution is established in a time scale of the order ~o. 

Therefore the equations (2.8b) for the x-dependent functions reduce to 

OW s,D/ a X = ?Or(x, Eo ) ~32W D,s/ ~ E 2 (3.2) 
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3.2. Equal Probabilities in the Wells 

If the initial conditions are such that Ws(x, E, O) = 
f l (E,  0 )=  f , (E ,  0) for E<Eo and Ws(x,E,O)=W(E,O ) for E>Eo we 
will have 

f,(E, t)= f,(E, t)= W(E, t) (3.8) 

In this case the additional x-dependent functions Ws and wD need not be 
taken into account and both boundary conditions (3.7) read 

f(Eo + o, t) = f ( E o -  o, t) 

0ff(E,0E t) e=e0+ o _0W(E,0E t) e=Eo-o (3.9) 

3.3. Opposite Probabilities in the Wells 

If the initial conditions are such that Ws(Ix[, E, O)= f , (E ,  0 )=  
- f t ( E ,  0 ) = - W s ( - L x [ , E ,  0) for E < E o - A E  and Ws(x, EvO)=O for 
E> Eo+ AE (AE is the thickness of the boundary region ~x/Y) then we 
have outside the boundary layer 

f , (E,t)=-f  ,(E,t) for E<Eo-AE 
(3.10) 

I~(E, t ) = 0  for E>Eo+AE 

In this case the x-dependent functions Ws and wD must be taken into 
account, because otherwise the boundary conditions (3.7) cannot be 
fulfilled. For opposite probabilities in the wells, Ws(X, E, t) is antisymmetric 
in x and therefore, from (3.2), wD(x, E, t) is symmetric in x, i.e., 

Ws(Ixl, E, t)= -Ws( -  Ixl, E, t) 
(3.11) 

wD([xl, E, t)= wD(- Ix[, E, t) 

It then follows from (3.7) that we have to consider now the boundary con- 
ditions 

Ws(Ixl, Eo + 0, t) = [ ~ r ( E o  - 0, t) + Ws(IXl, Eo - 0, t) 

OWs(Ixl,oE E, t) E=eo+o_Of r(E,oE t) 
E =  E o 0 

OWs(IX[, E, t) e= (3.12) 
+ •E e0-o 

wD(lxl, Eo + O, t)= wD([xl, Eo--O, t) 

Owo([xI, e= eo + o -Ow~ e=Eo o 
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By these relations alTVr(E, O/dE at E =  E o -  0 and I~r(E o -0 ,  t) are linearly 
coupled. This coupling may be written in the form 

I~rj(E0- 0, t) + x(O/cQ t~t~r,t(E, t)/~E ]E=E0 o =0  (3.13) 

The additional factor O/ct with ~ given by (3.5) is introduced because we 
then get a relation for x without any dependence on 7 and O. Mixed boun- 
dary conditions of the type (3.13) are often encountered in heat-conduction 
problems. ~1) A similar relation [(11.122) of Ref. 9] was used for the Brow- 
nian motion in an inclined cosine potential. 

3.4. D e t e r m i n a t i o n  of  K and of  the  x - D e p e n d e n t  Funct ions 

Solutions of (3.2) with the symmetry property (3.11), fulfilling (2.9b) 
and (2.10b) and decreasing for energies outside the boundary region are 
given by [the variable u is defined in (3.3)] 

(i) E>Eo:  

wD(u, E) = w o ~ Im(a ,  exp[ --ct(n + 1/2)1/2(1 + i ) (E-  Eo)/O ] } 
n = 0  

x cos(n + 1/2)u 
(3.14) 

Ws(U, E) = w o ~ Re{a n e x p [ - a ( n  + t/2)~/2(1 + i ) (E-  Eo)/O] } 
n = 0  

x sin(n + 1/2)u 

(ii) E<Eo:  

wD(u, E)= - w  o ~ Im{bn exp[ct ~ (1 + i)(E-Eo)/O]} 
n = l  

x sin n[u[ (3.15) 

Ws(U, E)= w o ~ Re{b, exp[~ ~ (1 + i)(E-Eo)/O]} 
n = l  

• (u/luf)cosnu 

Here the real and imaginary parts are denoted by Re and Im. The index 
n = 0 must be excluded in (3.15) because w s would otherwise contain an x- 
independent function. For further consideration it is convenient to choose 
the common factor Wo according to 

Wo = -T-(O/a) ~ITvr.,(E, t)/~E ]E=eo o (3.16) 
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Inserting (3.14), (3.15) into the boundary condition (3.12), using (3.13), 
(3.16), and dividing by Wo we arrive at 

a~ ' s i n (n+  1/2)[ul = x  + ~ b~r 'cosnu 
n ~ 0  Pt~I 

( - a ~  rl + a~i))(n + 1/2) 1/2 sin(n + 1/2)Lul 
n = 0  

= - 1 +  ~ (b(r)--b(i))N~'~COSFlU 

~=1 (3.17) 

a~)cos(n+ 1/2)u= - ~ b~i'sinnlu[ 
n = 0  n = l  

(a~ ~) + a~i))(n + 1/2) 1/2 cos(n + 1/2)u 
n = 0  

= ~ (b~ r) + b~") ~ sin n[ul 
~ = 1  

From (3.17) the constant x and the coefficients an=a~r~+ia~ o and 
bn = b~ r) + ib~ ~ can be determined (see the Appendix A). 

The approximate results read 

a (r) = y(n + 1/2) 1 + z(n + 1/2)-3/2 + ai"), 

a(n i) = - z ( n  + 1/2) 3/2 + 6~ni) 

b(n r) = - - z n -  3/2 _~ 5 ( r )  

b~ il = yn 1 _ z n -  3/2 + 6~i), 

n = 0, 1, 2,... 

n = 0 ,  1,2 .... 

n = l ,  2 .... 

n =  1, 2,... 

(3.18) 

where ~, y, and z are given by 

=0.8554, y = 0.3992, z=0.1093 (3.19) 

and where the coefficients 6~ r), ci~ i), 6~ r), /~i) are listed in Table I. 

3.5. Determinat ion  of W+ and W_ 

According to (3.13) and (3.16) we have for the x-independent part the 
Taylor expansion near E < Eo 

ITV'r ,I(E , t) = gr,,(~ - 4) Wo, ~ ~< 0 (3.20) 
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Table I. The Coefficients =~(~) ..... ~(n ;) of (3.18) up to n = 5  (Computed for 
N=100 )  

0 0 . 0 1 7 5  - 0 . 0 8 3 8  - -  - -  

1 0 . 0 0 0 3  - 0 . 0 1 0 3  0 . 0 3 3 7  0 . 0 0 2 2  

2 - 0 . 0 0 0 2  - 0 . 0 0 3 7  0 . 0 0 8 5  0 . 0 0 0 5  

3 - 0 . 0 0 0 2  - 0 . 0 0 1 9  0 . 0 0 3 8  0 . 0 0 0 2  

4 - 0 . 0 0 0 2  - 0 . 0 0 1 1  0 . 0 0 2 2  0 . 0 0 0 2  

5 - 0 . 0 0 0 2  - 0 . 0 0 0 8  0 . 0 0 1 4  0 . 0 0 0 1  

where ~ and gr.z are given by 

= c~(E- Eo)/O = [2~/~/(Eo) O] 1/2(E- Eo) 

and 

(3.21) 

gr = 1, gz= - 1  (3.22) 

for 

Thus near E~Eo the functions W• read [cf. (2.7), (2.11)] 

W+=�89 for r ~< 0, i.e., E~<Eo 
(3.23) 

and 

W+=�89 for ~>~0, i.e., for E>~Eo (3.24) 

For positive x (positive u) gr = 1 and for negative x, (negative u) g / =  - 1  
has to be used. In Fig. 3a the functions 

Wr~189 I~:Wo+Ws+W~] for ~ < 0  • (3.25) 

are plotted as a function of u for constant ~ ~< 0 and in Fig. 3b (3.24) as a 
function of u for constant ~ >~ 0. We have omitted in Fig. 3a the term 
-gr,l~Wo of (3.23) because it would otherwise have dominated the plot for 
large negative 4. In the plots the sum in (3.14), (3.15) was taken up to 
n = N =  1000, whereas for n = 0,..., 5 the numerically calculated an and bn 
had been used. For n = 6,..., N we have employed the asymptotic expansion 
(3.18) without the ~, and b, terms. 
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Fig. 3. The distribution (3.25) and (3.24) in the boundary ]ayer as a function of u for various 
negative (a) and positive (b) ~ values. The l imit va|ues ~ --* - 0  and ~ -* +0 are also shown. 
In the figure the corresponding regions for W+ and W and for the right and left well or f ight 
and ]eft side are also indicated. 
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3.6. Asymptotic Expressions 

Inserting (3.18) into (3.13) and neglecting the small terms/~r) and 6~ i) 
we get for E ~ E o - 0 

W D = --Wo[ Y f  l(]Ul ) -- zJ~( lul )] 

u (3.26) 
W s =  --Wo-(-~] Zf  a( U ) 

where f,.(u) 

f , (u)  = 
n = l  

f d u ) =  
.=1 

f3(u) = 
n = l  

are defined by 

n -  l sin nu = (Tz - u ) /2  for 0 <~ u ~< 2~ (3.27) 

n - 3 / 2 s i n n u , ~ , ( 2 r c u )  m for O ~ u , ~ l  (3.28) 

oe  
/ , / - 3 /2  COS n u ~  ~,  n-3/2 _ _  (27.CU)1/2 = ~(3/2)-  ( 2 7 z u )  t/2 

n = l  

for 0 ~ u ~ l  (3.29) 

In (3.29) ~ is Riemann's ~ function. Whereas f l (u ) jumps  at u =  0,f2 and f3 
are continuous with square root dependence near u = 0  for u/>0. This 
square root dependence is dearly seen in Figs. 3a, b for the ~ = 0 line. [The 
approximate expressions (3.28), (3.29) can be found by integration of (2.1) 
of Chap. V in Ref. 14.] Notice the change of periodicity in the boundary 
layer. Inside the wells, i.e., for ~ < 0, the functions are periodic in u with 2~z, 
whereas above the critical energy Eo, i.e., for ~_ > 0 the combination of W+ 
and W_ are periodic with 2 x 2~, compare also Fig. l. 

In Fig. 4 the distributions (3.23), (3.24) are shown as a function of 
for various u values. Here the continuous dependence of the functions and 
of their derivatives at ~ = 0 for u r 0 is clearly seen. Neglecting the x-depen- 
dent functions in (3.23) we notice that the functions are zero at the energy 
E M defined by 

G, = N  (EM-- G )  = ~ (3.30) 

The length ~ M = x  is similar to the Milne extrapolation length in the 
kinetic boundary layer for the Fokker-Planck equation with an absorbing 
wall; see for instance Ref. 13. 

We want to emphasize that the boundary-layer distributions in the 
variables ~ and u are independent of the special form of the symmetric 
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Fig. 4. The distributions (3.23), (3.24) in the boundary layer as a function of ~ for various 
u values. The dotted lines show the u-independent part in (3.23). 

double-well potential. For asymmetric or metastable potentials, however, 
the boundary-layer distributions will be different. For a metastable poten- 
tial, for instance, where the right side of the potential in Fig. 1 will go to 
negative-infinite values, particles cannot enter into the left side for E > E o 
and v < 0, they can only leave the well for E > Eo and v > 0. Whereas the 
ansatz (3.15) can still be used inside the well of the metastable potential, 
the ansatz (3.14) does not fulfill the boundary condition of the situation 
described above and has therefore to be modified. The factor x in (3.13) 
will differ from the value in (3.19). Preliminary calculations ~18) lead for a 
metastable potential to the value 

~ 1.46 (3.31) 
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3.7. Connect ion to  the Work  of  Bfitt iker,  Harris, and Landauer 

To describe the influence of small but finite damping Biittiker et al. (7) 
and Bfittiker and Landauer (Sa~ introduced a factor ~BHL > 1, which con- 
nects the divergence of the probability current in E direction with the 
probability density itself. Because of the large change of their distribution/~ 
within the boundary layer we may neglect the first derivative in their 
equation (3.4) and thus obtain in their (BHL) notation 

rllBHLkT(dZfl/dE 2) = 7Br~e/~ (3.32) 

This relation has to be compared with our Eq. (3.13). Differentiating (3.13) 
and using again (3.13) we have (omitting the indices) 

~2(0/~)~(d2 W / d E  2) I E= Eo- o = - ~ c ( O / ~ ) ( a W / d E )  I E :  ~0-  0 

= W I ~ = E 0  (3 .33)  

Because their action integral IBnL and our action integral [cf. (2.t6) and 
(2.19)] are connected by I(Eo)=2L/(Eo)=2IBH L and because our c~ is 
defined by (3.5) we obtain by comparing (3.32) and (3.33) 0 /=7 ,  k T =  O) 

~BHL = 7~/h22 (3.34) 

Thus we are able to determine their ad hoc factor eBr~L. It should be noted 
that Biittiker, Harris, and Landauer applied their method to a metastable 
potential. As already mentioned, our K in (3.19) is valid for a double-well 
potential. The factor c~ (D) for a double-well potential thus has the value BHL 

2C~B = e(B~L ~4.293 (3,35) 

Biittiker (Sb) has defined a constant c~ B for the double-well potential, which 
is just twice the ~(m BHL'  

Using the ~: value for a metastable potential (3.31) we have 

~(M)BHL ~"~ 1.47 (3.36) 

4. E IGENVALUES A N D  E I G E N F U N C T I O N S  

We now want to determine the eigenvalues and eigenfunctions for a 
symmetric double-well potential. Outside the boundary layer the eigen- 
functions are assumed to be independent of x. Inserting the ansatz 

fie,,~(E, t)=2gr,Ao(E)e -~t for Emin<~E<Eo 

fie(E, t) = 2q~(E) e xt for E0 < E 

822/41/5-6-8 



844 Risken and Voigtlaender 

in (2.13), (2.14) leads for symmetric ( g r =  g t=  1) as well as for antisym- 
metric eigenfunctions (gr = - g t  = 1) to the eigenvalue equation 

[ d  I(E) ( I + o d )  + AT(E)] q~(E) 

= OI(E)  ~o"(E) + El(E) + OT(E)]  ~o'(E) 

+ (1 + A )  T(E) q~(E)=0 (4.1) 

where I(E) and T(E) are the action integral and its derivative introduced in 
Section 2, and A is defined by 

A = 2/7 (4.2) 

4.1. Boundary Condition at E = E m i  n 

Because of 

I(E) = I(Emi~) + I'(Emin)(E- Emin) --t- " ' "  

= T ( E m i n ) ( E -  E m i n )  -4- " "  

we obtain from (4.1) for E =  Emin 

Oq)t(Emin)--~-(1 + A )  q) (Emin)  = 0 

Thus at E = Emi, the derivative of ~o is coupled to q~ itself. 

(4.3) 

(4.4) 

4.2. Boundary Conditions at E = E  o for Even Eigenfunctions 

For even eigenfunctions (p(E) is different from zero for E >  E0. At 
E =  Eo, (P and its derivative must be continuous: 

~(Eo  - 0) = q,(Eo + 0) 

~ ' (Eo  - 0)  = ~o'(Eo + 0)  
(4.5) 

As explained in Section 3 no x-dependent functions occur near E = Eo. For  
E ~ oe the boundary condition for even functions is Such that q~ should 
vanish fast enough, so that all the moments exist. [Then q~'(E) will also 
vanish.] 
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4.3. Boundary Condition at E = E  o for Odd Eigenfunctions 

For odd eigenfunctions ~p(E) is zero for E >  Eo. In the boundary layer 
near E~Eo x-dependent functions must by taken into account leading to 
the boundary condition [cf. (3.13); notice I(Eo)= 2L(Eo)] 

r  - 0 )  = - ~ ( o / ~ )  ~o ' (Eo  - 0 )  
(4.6) 

= - K[7I(Eo) O/(2~)31/2 ~o'(Eo- 0) 

By these boundary conditions the eigenvalues and the eigenfunctions up to 
a normalization constant are uniquely determined. 

4.4. Numerical Determination of Eigenfunctions and Eigen- 
values 

Even eigenfunctions and eigenvalues are determined as follows. First 
(4.1) for E <  Eo was integrated by a Runge-Kutta  procedure starting with 
~0(Em~n) and qf(Emin) given by (4.4) with a certain value for 2. At E =  Eo 
we use (4.5) and integrate (4.1) to larger E. The eigenvalue follows from the 
requirement, that q~(Emax, 2) vanishes at some large value Emax. A similar 
method was already used to calculate the eigenvalues for the Brownian 
motion in periodic potentials. (is) 

To calculate odd eigenfunctions and eigenvalues we also integrate (4.1) 
by a Runge-Kutta  procedure starting with ~0(Emin) and ~o'(Emin) given by 
(4.4) with an estimated eigenvalue. The correct eigenvalue is now deter- 
mined by (4.6). Whereas for even eigenfunctions A = 2(7)/7 is independent 
of 7, for odd eigenfunctions A = 2(7)/7 depends on 7. 

4.5. Dependence of A (y )  for Small y 

Because the right-hand side in (4.6) is a small quantity, we may 
express the eigenvalue A(7) = 2(7)/7 for finite 7 in terms of the eigenvalue 
A(0) = Ao = 2(0)/7 and of the eigenfunction ~0 ~ in the zero-friction limit, i.e., 
by using the boundary condition 

~o(Eo - 0) = 0 (4.6a) 

instead of (4.6). 
As shown in Appendix B A = 2/7 can be expressed by 

2(7)=Ao(1--K-B ] Ao(1-~[I(Eo)?/(2zcO)]m B) (4.7) A(7) 
7 
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where B is given by 

I(Eo - O)[O(d~o~ [e=e0] 2 (4.8) 
B =  A(O) I~~ T(E) e x p [ - ( E o -  E)/O ][ q~~ ] 2 dE 

Thus A = 2/7 depends linearly on xf7 for odd eigenfunctions. 

4.6. Resul ts  

In Fig. 5 the lowest nonzero eigenvalues 2/7 for the double-well poten- 
tial (1.2) in the normalization - d z = d 4 = l  [see (2.25) of Ref. 1] as 
obtained by the integration procedure discussed above are shown and com- 
pared to those obtained by the matrix-continued-fraction method of Ref. 1. 
The potential difference of (1.2) between the hump in the middle and the 
minimum is given by 

AE = ~/4d4 (4.9) 

As mentioned in Ref. 1 the ratio 

AE/(kT) = d~/4d40 = 1/40 (4.10) 

is the same for different normalizations. In Fig. 5 the eigenvalues are shown 
for the high-temperature AE = k T  and for the low-temperature AE= 5kT. 
(An approximate expression for the lowest nonzero eigenvalue valid 
already for AE = 5kT is derived in Section 5.) As seen in Fig. 5 eigenvalues 
belonging to even eigenfunctions (even numbers) do not depend linearly on 
x/~ for small 7, whereas eigenvalues belonging to odd eigenfunctions (odd 
numbers) depend linearly on ~ for small ),. The corresponding even and 
odd eigenfunctions in the limit 7 ~ 0 are shown in Fig. 6. Owing to the 
boundary condition (4.6a) the odd eigenfunctions are zero for E >  E0 = 0, 
whereas the even eigenfunctions extend into this region. This extension of 
the even eigenfunctions in the region E >  E0 = 0 is very pronounced for 
AE= kT, but it is less noticeable for the lower temperature LIE= 5kT. For 
lower temperatures the different boundary conditions (4.5), (4.6a) for even 
and odd eigenfunctions only lead to a slightly different influence of the 
eigenfunctions. In Fig. 6b, for instance, the eigenfunctions 0 and 1 nearly 
coincide. Because of the different boundary conditions even and odd eigen- 
values do not need to alternate. For the low-temperature AE= 5kT the five 
lowest eigenvalues alternate, whereas for the higher-temperature AE= k T  
the third eigenvalue is larger than the fourth one for y < 1; cf. Fig. 5a. For 
finite 7 the boundary condition (4.6) should be used instead of (4.6a). In 
Fig. 7 the lowest normalized odd eigenfunction is shown for a finite y and 
for comparison for the limit 7 ~ 0. The normalization of the eigenfunctions 
is explained in Appendix C. With the help of this eigenfunction and the 
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Fig. 5. The eigenvalues A = 2/y calculated by means of the matrix-continued-fraction method 
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Fig. 7. The normalized eigenfunction of the lowest nonzero eigenvalue for A E  = k T  and for 
7 = 0.1 (solid line) and 7--* 0 (dotted line) for the normalized potential (1.2). 

boundary-layer theory of Section 3 the eigenfunction belonging to the 
lowest nonzero eigenvalue can be plotted in phase space. Starting with the 
coordinates x, v in phase space, we obtain first the energy (2.2). The 
u values are obtained according (3.3) or (3.3a) for E=Eo. For other 
energies u may approximately be calculated by (3.3), where E0 is replaced 
by E and the lower bounds in the integrals are replaced by xr~(E) for 
E < Eo. The result for the eigenfunction with the lowest nonzero eigenvalue 
is shown in Fig. 8a. In Fig. 8b the normalized eigenfunction obtained by 
the matrix-continued-fraction method is shown for comparison. Though 
the value 7 = 0.1 is still a little bit too large for applying the low-friction- 
limit theory, both functions agree quite well for energies below and slightly 
above the critical energy Eo. Well above the critical energy deviations 
occur. These deviations are expected, because (3.2) is valid only near the 
critical trajectory. It should also be noted th~at near the origin x = v = 0, the 
low-friction-limit theory fails. Because the velocity v(x, Eo) is zero for x = 0 
the approximations made are no longer valid. 

4.7. Complex Eigenvalues 

As discussed in Ref. 19 (see also Section 11.9.1 of Refs. 9 and 20) a 
contraction of some of the eigenfunctions toward the minima of the poten- 
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Fig. 8. Altitude charts of the eigenfunction ~1 of the lowest nonzero eigenvalue of the nor- 
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c =  4-0.001, +__0.005, +0.01 (dotted lines). The wavy behavior of the nodal curve q~l = 0  in 
Fig. 8b indicates that the dimension of the matrices was not large enough for this low friction- 
constant. 
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tial occurs for complex eigenvalues and anharmonic potentials in the low- 
friction limit. The eigenvalues can then be obtained analytically [see (3.27) 
of Ref. 19 or (11.301) of Ref. 9]. In contrast to the periodic potential exam- 
ple treated in Ref. 19, the matrix-continued-fraction method for a double- 
well potential could not be carried out to such low friction-constants with 
our computer that an unequivocal correspondence between these eigen- 
values and the analytical eigenvalues could be found. 

5. L O W E S T  N O N Z E R O  E I G E N V A L U E  IN T H E  W E A K - N O I S E  
L I M I T  

In this Section we derive an expression in the low-temperature limit 
O ---, 0. As discussed in detail in Section 6 this limit is valid only if 7 is still 
much smaller than O, i.e., the condition O>>7 must still be satisfied, see 
also the remark following (5.23). To derive an analytical expression for the 
lowest nonzero eigenvalue we transform the differential equation (4.1) 
together with the boundary conditions (4.4) and (4.6a) (i.e., in the limit 

~ 0) into an integral equation. Formal integration of (4.1) leads to 

Oq)' + cp = -[Ao/I(E)] T(E') cp(E') dE' (5.1) 
Emin 

The boundary condition (4.4) is automatically fulfilled by (5.1), because of 

lira ~ fL- T(E') ~o(E') dE'= (P(Emin) (5.2) 
E ~ /~'min I(E) emin 

Considering the right-hand side of (5.1) as an inhomogeneous part we 
obtain by using (4.6a) 

q)(E) = (Ao/O) e ~/o I e~ ee'/~ re' JE ~ E~,o T(E") ~o(E") dE"dF~' (5.3) 

The integral equation (5.3) can be transformed to a Fredholm integral 
equation by using a proper partial integration. Introducing 

y(E) = f~o [ee,/o/i(E,) ] dE' (5.4) 

and the kernel 

K(E,E ' )=O- le -e /~  T(E ') for E' <E 
(s.5) 

= O-le  e/~ T(E') for E ' > E  
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the integral equation reads 

f j0 qo(E) = A o K(E, E') qJ(E') dE' (5.6) 
rain 

Here we will consider only odd eigenfunctions, though a similar procedure 
is also valid for the even eigenfunctions (see also Ref. 15, Section 5). In the 
weak-noise limit (i.e., O --> 0) we may write 

y ( E ) = O e E ~ 1 7 6  for E o - E ~ O  (5.7) 

Hence K(E, E') then factorizes and we have 

~o(E) = O - I A o Y o  e E/o f e~ T(E')  9 (E ' )  dE' (5.8) 
OEm in 

Multiplying (5.8) with T(E), integrating the resulting equation, and using 

M - -  I E~ T(E) e -El~ d E , , ~ O T ( E m J  e emi,/o (5.9) 
" Em in 

for small O, we thus arrive at the following result for the eigenvalue: 

0 I(Eo) c_(Eo_Emin)/0 (5.10) 
2 = yA o = y ~ = y OT(Emi,)  

This expression is similar to the one derived by Kramers (3) a long time ago. 
The corresponding eigenfunction may be obtained from (5.6) by iteration. 
As seen from (5.8) the zeroth approximation to the eigenfunction is (c is a 
normalization constant) 

q)( E) = ce - e l~  (5.11) 

This function is not valid near E ~ E o  because it does not fulfill the boun- 
dary condition (4.6a). After insertion of (5.11) either into (5.3) or 
equivalently into (5.6) we obtain in a better approximation 

qo(E) = Aoc K(E, E')  e e'/o dE' (5.12) 
Emin 

which fulfills the boundary condition (4.6a) as best seen from the 
equivalent expression (5.3). 
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The validity of the expression (5.10) can be extended to somewhat 
higher temperatures O by evaluating (5.7), (5.9) more accurately. Instead of 
(5.9) we have 

M = I  e~ [T(Emi,)+ T'(Emin)(E-Emin)] e e l~  
JE~ ~o (5.13) 

= T(Emin)  O exp(-Emin/6))[1 + OTt(Emin)/T(Emin)] 

For the double-well potential (1.2) we thus get 

T'(Emin)/T(Emin) = 3d4/4d 2 (5.14) 

M =  2rc(2/Id2]) 1/2 0 exp(daff4d4 O) (1 + 3d40 /4~ )  (5.13a) 

The evaluation of (5.4) is more complicated, because I(E) generally cannot 
be expanded in a power series at E=Eo .  For the double-well potential 
(1.2) with Eo = 0 the exact expression of I(E) in terms of the complete ellip- 
tic integrals is given by (2.21). Using the asymptotic expression (2.21") we 
have 

I(Eo) = 8 Id2I 3/2/3d4 (5.15) 

I -  I( E) ,,~ I -  ~( Eo)[1 + 3(d4 IEl/4d 2) 

x (1 +ln  16~/d4[E])] (5.16) 

Insertion in (5.4) leads to 

yo = O exp(Eo/O) I-~(Eo) 

x { l+3(daO/4d~)[ ln (16d~/d40)+C]}  (5.17) 

where 

C =  1 - x e -X lnxdx=0 .5772 . . .  (5.18) 

is Euler's constant. Further insertion leads to 

2 O 2 ~ ~ exp(-d2~/(4d40)) 
= Ao = My  ~ = 3red40 

x {1 -3 (d40 /4d~)[1  + C+ln(16d~jd40)]}  (5.19) 

Next we include the correction terms proportional to ~3/2. By (4.7), (4.8) 
this correction term can be expressed by the eigenvalue and eigenfunction 
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with boundary condition (4.6a). To derive B we first have to know ~o'(Eo). 
Using (5.5), (5.12) we have 

(Eo dK(Eo, E ' )  e_e,/o dE' 
(P'(E~ A~ JEmi. - ~ o  

Ee] 1 T(E ' )  e_e,/o dE' (5.20) 
= - A o c  i, 0 I(Eo) 

A o c M  

OI(Eo) 

Inserting the simpler relation (5.11) in the denominator we thus obtain 

A o M  ~ 'o 6) B = - - e  0/ - _ _  eE0/o (5.21) 
I(Eo) yol(Eo) 

To derive the last expression we used A o 
terms ~ O  we have (5.7) and obtain 

= O / M y  o. Without the correction 

B = I (5.22) 

Hence without the correction terms in O we obtain for the eigenvalue (4.7) 

U(Eo) 7 ~/~) I (E~  e -(EO-Emin)/O 1- LS;-d  j ; (5.23) 
x = , / O r ( E . , i . )  

Because the second term in the brackets, which is the correction term 
proportional to 73/2 , should be small compared to the first term, obviously 
the relation 7 ~ O should be fulfilled (see also the discussion in Section 6). 

For small 7 this value (rBH L = ;t) agrees with (3.11) of Ref. 7, if the fac- 
tor eB~L is given by (3.34). [Note that in the low-friction limit without the 
boundary-layer theory we have the same boundary condition ~0(E0)= 0 for 
the first eigenfunction of the double-well potential and of a metastable 
potential. Both eigenvalues therefore agree in lowest order.] For a com- 
parison one should use k T  = O, rl = 7, Ib = It(Eo) = I(Eo)/2, 
ooA = 27z/Tt(Emin) = 4rt/T(Emi,), Eb = Eo - Emin. The expression (5.23) is 
only valid if the additional term proportional to ,,/7 in the last factor of 
(5.23) is small compared to 1. 

Using the more accurate result (5.17) for the double-well potential 
(1.2) we get 

3d40 
B = 1 - - " ~ 2  [ ln (16d~/d40)+ C] (5.22a) 
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Fig. 9. The asymptotic expression (5.19), (5.25) (a) and (5.22a) (b) as a function of O (dot- 
ted lines) and the results (5.25) and (4.8) as obtained by numerical integration of (4.1) (solid 
lines). 
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The final result for the double-well potential (1.2) reads 

2 =  7 2 x,/2 ~ exp ( -d22"~ 
3r~ d40 \ 4 d 4 0  j 

x { 1 - 3 (d40 /4~)[1  + C + ln(16d2Jd40)] } 

x {1 - x[16 Id2L 3/27/(3rcd40)] 1/2 

x [1 - 3(d40/4d~)(ln(16d~z/d40 ) + C)] } (5.24) 

Underlined terms are the corrections with respect to finite O. To check the 
approximate expressions (5.19) and (5.22a) we have plotted in Fig. 9 the 
factor 

3ztd40 

and B as a function of the temperature O and compared these quantities to 
those obtained from numerical integration of (4.1). It is clearly seen that 
(5.19) and (5.22a) are the asymptotic expressions for small O. The 
expression (5.24) without the underlined terms was compared with the 
matrix-continued-fraction result in Fig. 6a of Ref. 1 and Fig. 2 of Re[ 10. 

6. D I S C U S S I O N  A N D  C O N C L U S I O N  

By introducing energy and position variables we have shown that the 
eigenvalues as well as the eigenfunctions of the Fokker-Planck equation for 
a double-well potential can be calculated in the low-friction limit. By con- 
sidering a boundary-layer theory in the region of the critical trajectory 
eigenvalues of odd eigenfunctions have the form A7 + B7 3/2 whereas the 
term proportional to 73/2 is missing for eigenvalues of even eigenfunctions. 
Furthermore the complicated distribution near the critical trajectory was 
obtained (see Figs. 3, 4, and 8). (For a recent dispute about the dis- 
tributions near the critical trajectories, see the comments of Biittiker and 
Landauer (21) and Carmeli and Nitzan. (z2)) Eigenvalues and eigenfunctions 
obtained by the present method agree very well with those obtained by the 
matrix-continued-fraction method of Ref. 1 for low friction-constants. For 
a recent review article on escape rates from a metastable state, see Ref. 23, 

Finally we want to discuss the approximate regions of applicability for 
various procedures to obtain the first nonzero eigenvalue. The approximate 
regions for the normalized variables O = k T / 4 A E  and ~-=7/Id211/2 a r e  

shown in Fig. 10. In the weak-noise limit O ~ 0 we can use Kramer's rate, 
i.e., (4.4a) of Ref. 1, if the damping constant ~ is appreciably larger than the 
temperature O. In the low-friction limit ~ ~ 0 we can apply the results 
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Fig. 10. Approximate regions of validity for various approximation methods to obtain the 
first nonzero eigenvalue are shown by different lining. The various methods are: matrix-con- 
tinued-fraction method of Ref. 1; Kramers' rate [see for instance (4.4a) of Ref. 1 ]; low-friction 
theory (Section 4); low-friction case and weak-noise case (Section 5). The normalized 
parameters of the bistable potential (1.2) are ~ = kT/4AE= d4kT/d~2 , ~ = ~/[d211/2 

presented here if the temperature 0 is appreciably larger than ~, see also 
the remark following (5.23). Whereas for 0 4 1  (~ must then still be 
appreciably smaller than O) analytical results can be given, one has to use 
a numerical integration procedure for larger temperature O. The restriction 
of the matrix-continued-fraction method is that the normalized tem- 
perature 0 as well as the normalized friction constant ~ should be not too 
small. If  both the temperature 0 and the friction constant ~ are of the same 
order and both become very small, we do not know a suitable method for 
calculating the transition rate. (One may of course use a suitable inter- 
polation method connecting both analytical results, like a Pad6 
approximation,  as done by Skinner and Wolynes. (24) 
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APPENDIX A 

To determine the coefficients a(n r), a (~)",U;,~'~r~, b(f and the constant ~c from 
(3.17) we first expand sin(n + 1/2)[u[ and sin n[u[ in the series 

s in(m+ 1/2)lul = A m +  ~ Amn c~ (Al) 
n = l  

sin m[ul = ~ B,~, cos(n + 1/2)u (A2) 
n = O  

with 
A,, = [z(n + 1/2)] 

Am,,= [~z(m + n + 1/2)3- ~ + [~z(m-n + 1/2)] ~l (A3) 

Bran = [~(m + n + I/2)] ~2 + [-~(m - n - 1/2)] - 1 

Insertion of (A1) into the first and second equation in (3.17) leads to 
equations where only cos nu (n =0,  1, 2,...) terms occur. Similarly by the 
insertion of (A2) into the third and fourth equation of (3.17) leads to 
equations where only cos(n + 1/2)u terms occur. Equating the coefficients 
we thus obtain the following infinite system of equations: 

b~ r ) -  ~ A~nna(~ )=0, 
m ~ 0 

~c- ~ Ama~)=0 
m = 0  

m = O  

m = 0  

a~ i) + ~ B,,,nb}~ ) = O, 
m = l  

n = l, 2, 3,... (A4) 

(m + 1/2) 1/2 Amn ( - a ~  ) + a~ )) 

+ n = 1 , 2  .... 

(m + 1/2) 1/2 Am(a~ ~ - a}~ )) = - 1  

(n + 1/2)'/2(o(. + a ( f )  - 

n = 0 ,  1,2 .... 

m = l  

(aS)  

(A6) 

(A7) 

(A8) 

n =0,  1, 2,... (A9) 
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By replacing the coefficients according to 

b(r - ( -  1)" a(0 a(rl-., - ( -  1)" b(O 

b(. ;) --+ ( - 1 )" a~() a(. ~ + ( - 1 )" b(. ~) 

C , , = ( - 1 ) ' A , ,  Cm, ,=(-1)m+"Am,,  Sm.= - ( - 1 ) " + ' B m . ,  

we obtain the same equations which occurred in the problem of Brownian 
motion in a cosine potential [see (A6)-(A9) of Ref. 12]. To solve the 
infinite system (A4)-(A9) we have to truncate it. Putting the coefficients 
a(, r,o and b(, r'~ equal to zero for n>~N+ 1 we have 4 N +  3 unknowns, 
namely, 2Nb[ ''~ " 'b(~ '~ (2N+ 2)a(o r '~  ag '~, and the constant ~. Because 
the number of equations must be the same, the index n runs in the interval 
1 <~n<~N in (A4) and (A6), in the interval O<~n<~N in (AS), and only in 
the interval 0 ~< n ~< N -  1 in (A9). The total number of equations is thus 
4 N +  3: 4 N +  1 for (A4), (A6), (A8), (A9) and 2 for (A5), (A7). If we solve 
(A4)-(A9) for large N, we guess the form (3.18) with small ~i(, r~ ..... /~(o for 
large n. This form is also consistent with analytical investigations of 
(A4)-(A9) for large n. Assuming that ~i(,r),..., /~(0 are zero for n > N, we thus 
obtain 

N 

-e , , v - - (n .  3/2+g,,)z+b(,r) - ~ Am,~a,.,,Alrl-- 0,-- n = 1, 2,..., N (A10) 
m = 0  

N 

~ . - c o y - - g o z -  ~ Am6~)=O (Al l )  
m - - O  

(e, - n 1/2) y q_ 2c,,z + . , /~( f /r)_ f~(O) 

N 

+ ~ (n+l/2)l/2A,,,,(d(~)-6(*m))=O, n = l , 2  ..... U (a12) 
m = 0  

N 

e o y +  Zcoz + ~ (m+ 1/2)l/2 Am(El~)-Ct(i,,))= - 1  (A13) 
m = O  

N 

d. y - [h., + (n + 1/2)-3/2] z + 6~ i' + 2 Bm.b(,,{ ' = O, 
m = l  

n = 0 ,  1, 2 ..... N +  1 (A14) 

[(n + 1/2) !/2 _ f . ]  y + 2d.z  + (n + 1/2)1/2(a(~ c) + 6~ ~ 

N 

- -  , ; ,  * . * r n n , U m  - -  b(im ) )  O, n = O, 1, 2 ..... N (A15) 
r n = l  

822/41/'5-6-9 
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The quantities Co, c,,..., h, are defined by 

, A m re 
c O ~ 

,n = 0 m + 1/2 2 

= ~ Amn 
c, m'~'=0m+l/2 0, 

d,,= ~" B'n=4re-~(2n-1)-2, 
m=l m 

oo 

e~ = ~--o 

A mn 

e,,= ~ (m+l/2)m, 
m = O  

f n = ~  Bmn 
m= 1 ml/2' 

Am 
go = (m + 1/2) 3/2 

m = 0  

Am n 
gn = (m + 1/2) 3/2' 

m = O  

Bran 
h n = m3/2, 

m=i 

A m  = g -1 (2  ~v/2 - 1) ~(3/2) 
m +  1/2 

= ~ -1 (4  X/2--  1) ~(5/2) 

n =  1, 2, 3... 

n = 0 , 1 , 2 , 3  .... 

(A16) 

n = 1, 2, 3,... 

n = 0 , 1 , 2 , 3  .... 

n = 1, 2, 3,... 

n = 0 , 1 , 2 , 3 , . . .  

where ~ is Riemann's zeta function. 
The sums not given analytically in (A16) can be calculated 

numerically by summation up to a large index M (e.g., 10 000) and by 
evaluating the remaining terms according to Euler's sum rule. Because we 
now have 4 N +  5 unknowns (K, y, z, fi{0r'0''" fi~5 "0, 6~ r'g)''' 6~ 'i)) the number 
of equations must also be 4 N +  5. Therefore the index n in one of the 
equations, which we have chosen to be (A14), must run to N +  1. By 
introducing proper vector and matrix notations and by using appropriate 
intermediate analytical steps the calculations can be reduced to one inver- 
sion of a ( N +  2 )x  ( N +  2) matrix plus proper multiplications instead of 
one inversion of a ( 4 N + 5 ) x  ( 4 N + 5 )  matrix, if (A10)-(A15) had been 
used directly. The results for N =  100 are given in (3.19) and Table I. The 
coefficients ~n r) ..... 6~/) for n > 5, not shown in the table, are less than 10 -3. 
With lesser accuracy the constant ~: has been already determined in Ref. 12. 
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APPENDIX  B 

To derive (4.7), (4.8) we make a perturbation expansion in terms of 
~c/~x/~. Inserting 

- A= A o 1 -  B ,  Ao--A(0 ) (B1) 
7 

~0(E)-- q~(~ + ~ ~o(~(E) (B2) 

into (4.2), (4.4), (4.6) we obtain in the order (x/e) ~ 

O d Aol ~0(~ 0 [~EI(E)  (1 + --d~)+T(E) = (B3) 

(1 + Ao) q~(~ + O~0(~ = 0 (B4) 

r176 = 0 (B5) 
and in the order (K/7) 1 

d 
Ao] = T(E) AoBqg(~ (B6) [~-E I(E) (1 + O --d-~)+T(E) (ptl)(E) 

(1 + Ao) q)(1)(Emin) + O~o(1)'(Emi,) = AoBq)(~ (B7) 

~o"~(Eo) = -O~o(~ (B8) 

Equation (B7) follows from (B6). We assume that we have solved 
(B3)-(B5). To find B we multiply (B6) with exp(E/O) ~o(~ and integrate 
the resulting equation from Emi n to  E o 

fee~,ee/~176176 

;? = A o B  T(E) ee/~176 2 dE (B9) 
ra in  

In the term of the left-hand side containing the derivative of second order 
we perform two partial integrations, in the term containing the derivative 
of first order we perform one partial integration. Using /(Emin)=0, (B8) 
and (B3)-(B5) we arrive at 

ee~176 0) O2[q~(~ o - 0)] 2 = AoB fe ~ T(E) ee/~176 2 dE (hi0) 
n 

which together with (B1) leads immediately to (4.7), (4.8). 
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APPENDIX C 

The eigenfunctions q~(x, v) of the non-Hermitian operator L in (2.1) 
are normalized according to 

dv dx qS+(x, v) ~b(x, v) = 1 (C1) 
- - o o  - - c o  

Because the eigenfunctions ~ + of the adjoint operator L + can be expressed 
by [see (10.164) of Ref. 9], a factor 1/N is, however, added here) 

q~ + (X, ~)) = q~(X, l ) ) / W s t ( X ,  v)  

= (2frO) m exp{ [v2/2 +f(x)]/O} r v)/N (C2) 

where N is the normalization 

N - l =  exp[-f(x)/O] dx (C3) 
- - o o  

Thus we may write instead of (C1) 

f0~ (2~O) m N 12 dv dx exp(E/O) OS(x, v) q~(x, - v )  = 1 ( e l ' )  
c o  

This normalization was also used in Ref. 1. 
For the first odd eigenfunction we have according to (2.7), (2.11), and 

(3.10) for the x-independent eigenfunctions 

�9 (x, v )=  ___ r E <  Eo 
(C4) 

=0,  E> E o 

where the upper sign is valid for x > 0 and the lower sign for x < 0. The 
boundary-layer region itself can be neglected in the normalization, because 
it leads to a contribution of the order x /T2= 7. Inserting (C4) into (CI ')  
introducing the variables E and x instead of v and x and using (2.16), 
(2.19) we thus arrive at the normalization condition 

(27~O) 1/2 N -1  f E~ T(E) q)2(E) exp(E/O) dE= 1 (C5) 
~ Em in 
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